Higher Dimensional Percolation

Paul Duncan
Department of Mathematics OSU

April 27, 2019

Bond Percolation

- Consider the integer lattice obtained by connected each vertex in $\mathbb{Z}^{d} \subset \mathbb{R}^{3}$ to its nearest neighbors. We can construct a random subgraph by starting with \mathbb{Z}^{d} and adding each possible edge with probability p independently.

Bond Percolation

- Consider the integer lattice obtained by connected each vertex in $\mathbb{Z}^{d} \subset \mathbb{R}^{3}$ to its nearest neighbors. We can construct a random subgraph by starting with \mathbb{Z}^{d} and adding each possible edge with probability p independently.
- A classical problem is to find the threshold for p, called $p_{c}\left(\mathbb{Z}^{d}\right)$ at which an infinite connected component appears with positive probability.

Plaquette Percolation

- Construct a random complex by starting with the full integer lattice and adding 2-dimensional faces with probability p independently.

Theorem (Aizenman, Chayes, Chayes, Frölich, Russo)
Let γ be a planar rectangular loop in the integer lattice $\mathbb{L} \subset \mathbb{R}^{3}$,
and let W_{γ} be the event that there is a plaquette surface with γ as its boundary. Then we have

for some $0<\alpha(p), \beta(p)<\infty$.

Plaquette Percolation

- Construct a random complex by starting with the full integer lattice and adding 2-dimensional faces with probability p independently.

Theorem (Aizenman, Chayes, Chayes, Frölich, Russo)
Let γ be a planar rectangular loop in the integer lattice $\mathbb{L} \subset \mathbb{R}^{3}$, and let W_{γ} be the event that there is a plaquette surface with γ as its boundary. Then we have

$$
\mathbb{P}\left(W_{\gamma}\right) \sim \begin{cases}\exp (-\alpha(p) \operatorname{Area}(\gamma)) & p<1-p_{c}\left(\mathbb{Z}^{3}\right) \\ \exp (-\beta(p) \operatorname{Per}(\gamma)) & p>1-p_{c}\left(\mathbb{Z}^{3}\right)\end{cases}
$$

for some $0<\alpha(p), \beta(p)<\infty$.

