Higher Dimensional Percolation

Paul Duncan

Department of Mathematics OSU

April 27, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bond Percolation

- Consider the integer lattice obtained by connected each vertex in Z^d ⊂ R³ to its nearest neighbors. We can construct a random subgraph by starting with Z^d and adding each possible edge with probability p independently.
- A classical problem is to find the threshold for p, called p_c(Z^d) at which an infinite connected component appears with positive probability.

Bond Percolation

Consider the integer lattice obtained by connected each vertex in Z^d ⊂ R³ to its nearest neighbors. We can construct a random subgraph by starting with Z^d and adding each possible edge with probability p independently.

► A classical problem is to find the threshold for p, called p_c(Z^d) at which an infinite connected component appears with positive probability.

Plaquette Percolation

Construct a random complex by starting with the full integer lattice and adding 2-dimensional faces with probability p independently.

Theorem (Aizenman, Chayes, Chayes, Frölich, Russo)

Let γ be a planar rectangular loop in the integer lattice $\mathbb{L} \subset \mathbb{R}^3$, and let W_{γ} be the event that there is a plaquette surface with γ as its boundary. Then we have

$$\mathbb{P}(W_{\gamma}) \sim \begin{cases} \exp(-\alpha(p)\operatorname{Area}(\gamma)) & p < 1 - p_{c}(\mathbb{Z}^{3}) \\ \exp(-\beta(p)\operatorname{Per}(\gamma)) & p > 1 - p_{c}(\mathbb{Z}^{3}) \end{cases}$$

for some $0 < \alpha(p), \beta(p) < \infty$.

Plaquette Percolation

Construct a random complex by starting with the full integer lattice and adding 2-dimensional faces with probability p independently.

Theorem (Aizenman, Chayes, Chayes, Frölich, Russo) Let γ be a planar rectangular loop in the integer lattice $\mathbb{L} \subset \mathbb{R}^3$, and let W_{γ} be the event that there is a plaquette surface with γ as its boundary. Then we have

$$\mathbb{P}(W_{\gamma}) \sim \begin{cases} \exp(-\alpha(p)\operatorname{Area}(\gamma)) & p < 1 - p_{c}(\mathbb{Z}^{3}) \\ \exp(-\beta(p)\operatorname{Per}(\gamma)) & p > 1 - p_{c}(\mathbb{Z}^{3}) \end{cases}$$

for some $0 < \alpha(p), \beta(p) < \infty$.